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ABSTRACT

A folding wing structure consisting of three components: fuselage, inboard wing and outboard wing,

is modeled computationally using a geometrically nonlinear structural dynamics theory based upon

von Kármán strains and a three-dimensional nonlinear potential flow aerodynamic model. The

structural dynamic equations of motion are discretized in space using a discrete Ritz basis derived

from finite element analysis and component synthesis and the aerodynamic model is discretized

using a vortex lattice. Results from the computational model are compared to those from experiments

designed and tested in the Duke University wind tunnel for three folding wing configurations. It

is found that overall, limit cycle oscillation magnitude and frequency results from theory compare

well with those measured in the experiment. The study also indicated that as the flow velocity is

increased, the computed limit cycle response of the inboard wing showed a higher level of dynamic

complexity, as measured by the number of significant frequencies contained in the response, than the

experimental model. The theoretical model also predicts that, for the two folding wing configurations

with the smaller outboard folding angles, the outboard wing limit cycle oscillation tip displacement

results are very similar and significantly larger in magnitude than those of the configuration with

the largest outboard folding angle. Overall both the theoretical and experimental models demonstrate

that different flutter and limit cycle behavior may occur for different folding wing configurations.

Also it appears that structural nonlinearities are stronger than aerodynamic nonlinearities for the

cases studied.

1.0 INTRODUCTION

Efforts to develop morphing air vehicles with multiple mission capabilities have recently been under-
taken by several research teams including NASA’s Aircraft Morphing program [1] and the Defense
Advanced Research Projects Agency’s Morphing Aircraft Structures program [2]. One such mor-
phing wing structure is the folding wing concept. With multiple individually articulated sections,
various wing geometries can be achieved in-flight allowing for multirole missions with the same
aircraft.
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Several parametric studies have been performed to assess the linear aeroelastic characteristics
of generic folding wing configurations [3]-[7]. The effect on aeroelastic stability of such parameters
as inboard wing folding angle and hinge stiffness were investigated. Conclusions from these studies
include 1) a trend of increasing flutter dynamic pressure with increasing inboard wing folding
angle 2) a higher sensitivity of flutter dynamic pressure with respect to outboard hinge stiffness as
compared to the inboard hinge stiffness and 3) morphing wing actuation energy depends on center
of gravity position, Mach number and wing sweep.

Lee and Chen [8] studied the effect of hinge free-play on the flutter and limit cycle oscillation
of folding wings. They observed that, for folding angles between 0 and 30 degrees, limit cycle
oscillation occurs even when the flight altitude is above that of the flutter boundary. Further
increases of the folding wing angle above 30 degrees resulted in no limit cycle oscillation. They
observed that when limit cycle oscillation did occur, it could occur even for very small values of
the free-play parameter (±0.02o).

In recent work, Tang and Dowell [9] introduced the concept of using component modal analysis
to model, efficiently and accurately, multi-component folding wing configurations. Their results
showed that an increase in inboard wing hinge stiffness leads to improved aeroelastic stability while
an increase in outboard hinge stiffness decreased the flutter velocity. They also noted that for certain
values of inboard hinge stiffness a hump-type flutter could occur. Their computational results were
also compared to experiment and in the experiment limit cycle oscillation was observed. Good
agreement was found between computed and measured flutter velocities and frequencies. However
due to the linear nature of the structural and aerodynamic computational models used in this work,
the prediction of these limit cycles was not possible.

The work presented in this paper is an extension of that presented in Ref. [9] to include
nonlinear effects in both the structural and aerodynamic models. Geometric nonlinearity in the
structure is modeled using von Kármán strains with Kirchhoff thin-plate theory and the resulting
nonlinear variational statement is discretized with a discrete Ritz basis computed using a combined
finite-element/component synthesis analysis. The flow is modeled using a vortex lattice potential
model which accounts for the nonlinear tangent flow boundary conditions. Post-flutter limit cycle
results from the computational model are compared to those measured in experiment for three
different outboard wing folding angle configurations.

2.0 FOLDING WING CONFIGURATION

A schematic of the folding wing geometry which is to be investigated is shown in Figure 1. The
folding wing system consists of three separate components, component A, i.e. fuselage; component
B , i.e. inboard wing and component C , i.e. outboard wing. Components A and B are attached
through a hinge which is modeled as a set of torsional springs at several points, Pj with spring
stiffness, KAj. Components B and C are also attached through a hinge which is modeled as a set
of torsional springs at several points, Sj with torsional spring stiffness, KBj . The hinge model is
assumed to have negligible mass compared to the wing structure model. The initial folding angles
between components A and B, and B and C are θb and θc, respectively. Note that θb and θc are the
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Figure 1: Schematic of a folding wing geometry and coordinate systems.

static equilibrium angles. These depend upon the initial unsprung wing folding angle and sprung
deformation due to wing gravity. In addition to the main coordinate system, xyz, two additional
local coordinate systems, ζbηbξb and ζcηcξc for components B and C are used as shown in Figure 1.

The relationships between the main coordinate system and local coordinate systems are ex-
pressed as follows.
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3.0 STRUCTURAL EQUATIONS OF MOTION

3.1 Nonlinear Variational Statement

The statement of virtual work requires that the work done by externally applied loads be equal
to the work done by inertial, dissipative and internal forces for any virtual displacement. For a
structure with volume V and surface area S this can be written as

∫

V
δuT FdV +

∫

S
δuT ΦtrdS =

∫

V

(

δuT ρü + δuT cu̇ + δǫTσ
)

dV (2)

where F and Φtr represent prescribed body forces and surface tractions, ρ is the mass density and
c is a damping parameter. Also δu, δǫ and σ represent the vectors of virtual displacements, virtual
Green-Lagrange strains and second Kirchhoff-Piola stresses respectively.

Here it will be assumed that Kirchhoff plate theory applies and that plate rotations are negligible
compared to unity (von Kármán assumption). With these simplifications, the Green-Lagrange
strains can be written as

ǫxx = ûx +
1

2
ŵ2

x − zŵxx (3)

ǫyy = v̂y +
1

2
ŵ2

y − zŵyy (4)

ǫxy = ûy + v̂x + ŵxŵy − 2zŵxy (5)

where to the degree of accuracy given by the von Kármán and Kirchoff assumptions, the x, y and
z displacements u,v and w, which make up the vector u in Eq.2 are given as:

u ≈ û − z
∂ŵ

∂x
(6)

v ≈ v̂ − z
∂ŵ

∂y
(7)

w ≈ ŵ (8)

The displacement vector u now can be considered to contain only the mid-plane displacements û,
v̂ and ŵ.

To be consistent with the Kirchhoff and von Kármán assumptions it is assumed that the consti-
tutive model is linear, plane stress. Hence, given a constant component thickness h, we can define
the membrane (N) and bending (M) resultant forces as:

N =

∫ h/2

−h/2

σdz =

∫ h/2

−h/2

Cǫdz =

∫ h/2

−h/2

C (ǫm + zχ) dz = hCǫm (9)

M =

∫ h/2

−h/2

σzdz =

∫ h/2

−h/2

Cǫzdz =

∫ h/2

−h/2

C (ǫm + zχ) zdz =
h3

12
Cχ (10)

where σ = Cǫ is the linear plane stress constitutive relation and ǫm and χ are the membrane
strains and curvatures respectively (see Eqs.3-5).
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Integrating the volume integrals in Eq.2 over the thickness and substituting Eqs.9,10 gives the
following virtual work expression:

h

∫

S
δuTFdS +

∫

S
δuT ΦtrdS = h

∫

S
δuT ρüdS + h

∫

s
δuT cu̇dS +

∫

S
δǫT

mNdS +

∫

S
δχT

mMdS

(11)

At this point a decision must be made as to how Eq.11 is to be semi-discretized in space. In
other words, what sort of trial functions (Ritz basis) will be used to represent the displacements
contained in the displacement vector u and the variation of this vector δu. Popular choices include
hat functions (in finite element methods) and eigenfunctions of the linearized system. Here we will
choose these functions to be N-dimensional vectors derived using component synthesis analysis in
combination with finite element analysis (to be more fully explained in the next section).

The displacement vector D corresponding to the x,y and z mid-plane displacements at N

discrete points in space and the variation of this displacement vector δD can now be written
respectively as

D = Ψζ(t) (12)

and

δD = Ψδζ (13)

where Ψ is a 3N × P matrix containing the P 3N -dimensional basis vectors and ζ is a vector
of independent generalized time dependent degrees of freedom. Note, if instead of finite element
analysis, continuous functions were used in the component synthesis procedure, N would be equal
to one.

Each basis vector in Ψ satisfies the system geometric boundary conditions (in the discrete sense)
but not necessarily the natural boundary conditions and hence these vectors can be considered to
be in the admissible class [10].

The vectors of membrane strains and curvatures and virtual membrane strains and curvatures
are expressed in terms of the generalized displacements and virtual displacements as (using standard
“B matrix” notation[11]):

ǫm =
(

Bl
m + B

nl
m

)

ζ (14)

δǫm =
(

Bl
m + Bnl

m

)

δζ (15)

χ = Bbζ (16)

δχ = Bbδζ (17)

Substitution of Eqs.13-17 into Eq.11 gives:

δζT

(

h

∫

S
ΨTFdS +

∫

S
ΨTΦtrdS − h

∫

S
ΨTΨρdSζ̈ − h

∫

S
ΨT cΨdSζ̇

−

∫

S
(Bl

m)T NdS −

∫

S
(Bnl

m)TNdS −

∫

S
BT

b MdS

)

= 0 (18)
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Considering the arbitrariness of the virtual generalized displacements, Eq.18 can be written as:

h

∫

S
ΨTΨρdSζ̈ + h

∫

S
ΨT cΨdSζ̇ +

∫

S
(Bl

m)TNdS +

∫

S
(Bnl

m)TNdS+

∫

S
BT

b MdS = h

∫

S
ΨTFdS +

∫

S
ΨTΦtrdS (19)

Equation 19 is the semi-discretized (in space) equation of motion for the system. The integrals
over dS in Eq.19 are performed for each component using the midpoint rule in the local coordinate
system of the component. In order to compute the derivatives needed to construct the “B” matrices
in Eq.19, third-order finite difference approximations are used.

Discretization in time of Eq.19 is accomplished through the use of the Hilbert-Hughes-Taylor
(HHT) implicit, second order, finite difference scheme [11].

3.2 Derivation of Ritz Basis Through Component Synthesis

As the details of component modal synthesis are presented in great detail in many references (see
Refs.[10],[12-18]),the general homogeneous disjoint set of equations for M components will be given
without derivation. This set of disjoint equations is generated by writing Lagrange’s equations for
each of the components and when put into one matrix system can be expressed as

Mdζ̈d + Cdζ̇d + Kdζd = 0 (20)

where ζd = [ζT
1 , ζT

2 ...ζT
M ] is the disjoint generalized displacement vector of dimension R and Md,Cd

and Kd are the R × R block-diagonal disjoint mass, damping and stiffness matrices respectively.
The word disjoint is used here to describe a set of coordinates which are not independent. The
value of R corresponds to the sum of the number of basis vectors chosen for each component. After
the component (vector) bases are generated using finite element discretization, the disjoint matrices
in Eq.20 are computed using numerical integration (midpoint rule) over each component area (for
the in-plane stiffness matrices) and orthonormality (for the out-of-plane stiffness matrices). Inertial
contributions are considered for each component of the displacement.

In the current work, the potential energy expressions used to derive Eqs.20 include contributions
from the linear plate bending and membrane strain energy and the energy due to the torsional
springs at the attachment points. The potential energy U due to these springs, at the interfaces
A − B and B − C (see Fig.1), is given by

{

UA−B = 1

2

∑

j KAj(
∂ŵA

∂y |y=lA − ∂ŵB

∂ηB
|ηB=0)

2 , j = 1......NP

UB−C = 1

2

∑

j KBj(
∂ŵB

∂ηB
|ηB=lB − ∂ŵC

∂ηC
|ηC=0)

2 , j = 1......NS ,

where NP and NS are the total numbers of the attachment points of the two interfaces.

The individual component generalized displacement vectors ζi can in turn be written as

ζT
i = [aT

i ,bT
i ,qT

i ] , (21)
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where ai, bi and bi are the ith component generalized coordinates corresponding to the vectors of
x,y and z mid-plane displacements respectively:

ûi =
∑

j

ai
jψ

i
j (22)

v̂i =
∑

j

bi
jη

i
j (23)

ŵi =
∑

j

qi
jγ

i
j (24)

In Eqs.22-24, ψi
j ,η

i
j and γi

j correspond to the jth basis vector used to expand the ith component
x,y and z mid-plane displacement vectors.

In this paper the S = 3Np + 3Ns interface constraints are enforced through the writing of a
matrix equation of dimension S × R which is written as

Aζd = 0 (25)

In order to remove the redundant coordinates from ζd a coordinate transformation between ζd and
the set of independent coordinates ζ is performed. This transformation is given by the equation

ζd = Tζ (26)

This coordinate transformation consists of finding a basis for the null space of the matrix A and
then expanding ζd in these vectors. The basis is computed using a singular value decomposition of
the matrix A. It should be noted that an alternative method of handling the constraints would be
through the introduction of Lagrange multipliers into Lagrange’s equations [12].

In the above expression for the disjoint equations of motion, the coordinate transformation
between the 3N dimensional vector of physical displacements D and ζd is given by

D = Ωζd (27)

where Ω is a matrix composed of all the component basis vectors. Using the coordinate transfor-
mation given in Eq.26, Eq.27 can be written as

D = ΩTζ = Ψζ (28)

The matrix of global basis vectors Ψ is then used in the nonlinear variational statement, Eq.19.

A further reduction in dimension can be performed if Eq.26 is placed into Eq.20 and the system
is then premultiplied by the transpose of T [19]. The resulting system can then be cast as an
eigevalue problem and the matrix of eigenmodes Γ then used in the coordinate transformation:

D = ΩTΓζr = Ψrζr (29)

While this procedures can lead to a drastically reduced system dimension, unfortunately the re-
sulting global basis vectors satisfy (in the discrete sense) the linear natural in-plane boundary
conditions which degrades the solution convergence of the nonlinear problem [20] with respect to
the required number of basis functions.

Nonlinear Aeroelastic Study for Folding Wing Structures 
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3.3 Component Basis Selection

The components of the folding wing structure studied here have the following material/geometric
properties. Component A is constructed from plexiglas with a modulus 3.05 × 109 Pa., density
1145 kg/m3, Poisson’s ratio of 0.45 and thickness 0.00238 m. Components B and C are constructed
from aluminum with modulus 7.2× 1010 Pa., density 2850 kg/m3, Poisson’s ratio 0.3 and thickness
0.000254 m. The stiffness values KAj, KBj used for the torsional springs at the component interfaces
is 0.18 kg·m/s2. For the results presented in this work, the value of θb is 30 degrees and three values
of θc are investigated, 0, 30 and 60 degrees.

The interface constraints (as expressed in Eq.25) are that the component mid-plane deflections
(û, v̂, ŵ) in the global xyz coordinate system are to be the same at the hinge attachment points.

Each of the component bases used in this work are computed using a finite element modal anal-
ysis. The commercial code ANSYS [21] is used for this purpose. The following types of component
bases are used to expand the out-of-plane deflections ŵ:

Component A: the elastic out-of-plane clamped-free-free-free modes from a modal analysis of
Component A.
Component B: the out-of-plane elastic and rigid body modes from a free-free-free-free modal
analysis of Component B.
Component C: the out-of-plane elastic and rigid body modes from a free-free-free-free modal
analysis of Component C.

The component in-plane deflections are expanded using the following types:

Component A: both û and v̂ are expanded using the elastic out-of-plane simply-supported-
free-free-free modes computed with a modal analysis of component A.
Component B: both û and v̂ are expanded using the 3 rigid body modes from a linear plane
stress modal analysis of component B and the remaining basis vectors are the elastic out-of-plane
free-free-free-free modes for component B
Component C: both û and v̂ are expanded using the 3 rigid body modes from a linear plane
stress modal analysis of component C and the remaining basis vectors are the elastic out-of-plane
free-free-free-free modes

The number of out-of-plane modes used for components A, B and C is 25, 75 and 75 respectively
while the number of in-plane modes is 5, 15 and 15. These choices , after the redundant coordinates
are eliminated, give a total number of structural degrees of freedom of 221. A convergence study
showed that this number modes gave good solution convergence.

It should be noted that the choice of the types of bases used in the expansion of the in-plane
components is guided by the work presented in [20].

The results for the first five modal frequencies for the three outboard wing folding configurations
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are shown in Table 1 (denoted as Theory in Table 1) along with the corresponding results from an
ANSYS modal analysis conducted using a finite element discretization of the complete structure
and experiment.

Table 1: Comparison of first five folding wing modal frequencies

θc = 0 θc = 30 θc = 60

Present Present Present

Mode Theory ANSYS Test Theory ANSYS Test Theory ANSYS Test

1 4.67 4.66 4.75 4.53 4.54 4.25 4.67 4.67 4.0

2 16.67 16.82 16.0 17.01 17.18 17.25 16.67 16.77 15.25

3 22.23 22.88 32.5 36.40 37.04 31.50 22.22 22.50 23.50

4 41.72 42.15 43.75 43.39 43.63 46.25 41.71 41.80 47.5

5 66.17 67.68 75.25 67.99 69.45 73.25 66.15 67.19 75.25

4.0 AERODYNAMIC EQUATIONS

The flow field about the folding wing model is assumed to be potential flow. Therefore the equations
of motion for the fluid can be reduced to Laplace’s equation for the velocity potential Φ

∇2Φ = 0 (30)

The boundary conditions which must be satisfied are those of zero normal flow on the wing,i.e.

(∇Φ + q) · n = 0 (31)

and also that the disturbance created by the potential must decay at distances far from the wing.
The latter equation can be expressed as

lim
r→∞

∇Φ = 0 (32)

In Eq.31 q is the relative velocity between the undisturbed fluid in the fluid domain and the wing.
Using Green’s identity it can be shown [22] that a solution to Eqs.30-32 can be found by distributing
elementary solutions to Laplace’s equation on the problem boundaries. For the model presented
here this is accomplished by distributing vortex rings on the wing surface and in the wake.

In this work the small disturbance assumption is not made and hence the aerodynamic grid
used to define bound collocation and vortex locations is moved in three dimensions using the three
components of the displacment vector. It was determined through preliminary calculations that
imposing the physically correct, but numerically expensive force-free wake condition had very little
effect on the solution hence the results presented here use a planar wake assumption. However the
trailing edge wake shedding location is taken to be the deformed position. See Katz and Plotkin
[23] for further details on the use of vortex rings to discretize the flow model.
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The pressure on the wing p, which is the external load acting on the structure and used to
compute Φtr in Eq.19, is calculated using the unsteady (and nonlinear) form of Bernoulli’s equation:

p∞ − p

ρ∞
=

(∇Φ)2

2
− q · ∇Φ +

∂Φ

∂t
, (33)

where p∞ and ρ∞ are the free stream pressure and density respectively. The time derivative in
Eq.33 is computed using a first-order backward difference approximation.

5.0 COUPLING OF STRUCTURAL AND FLUID MODELS

Coupling of the aerodynamics to the structural dynamics occurs through the specification of the
tractions Φtr in Eq.19 and by the resulting structural deflection and velocity , which is used in the
solution of Eqs.30,31.

Strong coupling of the fluid and structural models is achieved via subiteration within each
timestep of the simulation [24]. As the grid used in the computation of the component bases is
not coincident with the grid used in defining the aerodynamic collocation points, the tractions,
structural displacements and structural velocities are interpolated using local bilinear interpolation
[25]

6.0 THEORETICAL AND EXPERIMENTAL CORRELATIONS

The results presented in this section are computed using the following numerical parameters. The
number of chordwise aerodynamic bound vortex rings is 30 and the number spanwise bound vortex
rings is 33. A total of 114 panels are used in the chordwise direction for the wake. With a timestep
of 0.0005 seconds and a minimum flow velocity investigated of 15.00 m/s, this corresponds to a
minimum of 3 chord lengths of wake. Structural damping is not used in the simulation, however
numerical damping is present in the HHT scheme. The damping parameter in the HHT scheme
is chosen to be 0.05 which has been found to give good results for nonlinear problems [26][27].
All response results shown in this section are for the structural deflection/velocity in the global z

coordinate direction.

Figures 2-4 compare the inboard wing (Component B), trailing edge tip root-mean square veloc-
ity of the limit cycle oscillations (LCO) from the current computational model to those measured in
the wind-tunnel experiments. Results for three different folding wing configurations are presented.

For each of the configurations, the correlation between computed and measured resonse at this
point on the folding wing is good. It does appear, however, that the computational model slightly
underpredicts the point of bifurcation (“flutter velocity”). The computational model predicts flutter
velocities of 15.5 m/s,15.35 m/s and 15.8 m/s for the configurations corresponding to θc = 0,θc = 30

Nonlinear Aeroelastic Study for Folding Wing Structures 
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Figure 2: Component B trailing edge,tip root-mean square LCO velocity versus flow velocity;
θb = 30,θc = 0.
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Figure 3: Component B trailing edge,tip root-mean square LCO velocity versus flow velocity;
θb = 30,θc = 30.
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Figure 4: Component B trailing edge,tip root-mean square LCO velocity versus flow velocity;
θb = 30,θc = 60.

and θc = 60 respectively. While difficult to determine exactly, the flutter velocities in the experiment
for these configurations are approximately 18 m/s,17.5 m/s and 17 m/s.

Also shown in Fig.2 is a computation, for a flow velocity of 16 m/s, which includes an aerody-
namic model which uses both the exact nonlinear tangent flow boundary condition and the impo-
sition of the force-wake free condition (denoted as THEORY: NL STRUC, NL BC, FF WAKE in
the figure) and a computation at 16 m/s which uses the linearized tangent flow boundary condition
and a planar wake(denoted as THEORY: NL STRUC, LIN BC, PLANAR WAKE in the figure).
While a definite conclusion can only be drawn for the flow velocity of 16 m/s and θb = 30,θc = 0
folwing wing configuration, it appears that for the stated flow velocity and folding wing configura-
tion,including the nonlinear boundary condition in the model appears to have a slight effect while
the inclusion of the force-free wake model has minimal effect. Results presented in the remainder
of this section are computed using a model which includes a nonlinear structural model, the exact
nonlinear tangent flow boundary condition and a planar wake assumption.

A comparison of the theoretical and experimental LCO dominant response frequencies as a
function of the flow velocity, as computed from a discrete Fourier transform of the response time
history, is shown in Figs.5-7.

For each of the configurations, near the flutter velocity the comparison between the compu-
tation and experiment for these response frequencies is good. Also, in both the computation and
experiment, the response frequencies appear to increase with increasing flow velocity. However,
unlike the experiment, as the flow velocity increases, the computational model results show in-
creasing dynamic complexity in the form of multiple frequencies having significant contributions
to the response. This behavior is shown in Fig.8 which compares the discrete Fourier transform
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Figure 5: LCO dominant response frequency for component B trailing edge tip velocity versus flow
velocity; θb = 30,θc = 0.
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Figure 6: LCO dominant response frequency for component B trailing edge tip velocity versus flow
velocity; θb = 30,θc = 30.
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Figure 7: LCO dominant response frequency for component B trailing edge tip velocity versus flow
velocity; θb = 30,θc = 60.

for the computational and experimental model at a flow velocity of 19.723 m/s for the the θc = 0
configuration. The computational results show the presence of multiple contributing response fre-
quencies,many of which are not integer multiples of each other. This increase in dynamic complexity
causes the dominant frequency to switch to a higher frequency for higher flow velocities as is seen
in Figs.5 and 6.

The complex nature of the computational results is further shown in Figs.9 and 10 which give
the velocity response time history and phase plots for the component B tip,trailing edge location
at a flow velocity of 22.70 m/s. The folding wing configuration for these two figures is θc = 0. In
contrast to Fig.10, Fig.11 is a phase plot for the same configuration at a flow velocity of 16 m/s
which is near the flutter velocity. The differences in the nature of the phase portraits are apparent.

In order to attempt to quantify this dynamic complexity a measure has been used which is
computed as the ratio of the magnitude of the maximum Fourier coefficient Amax to the magnitude

of all of the Fourier coefficients where this latter value is computed as
√

∑

i A
2

i . In order to account

for discrete sampling the maximum and the two surrounding points are used in the computation
of Amax. A small value of this measure denotes higher dynamic complexity in the form of more
frequency components contributing significantly to the resopnse. This measure is plotted versus
flow velocity for all three configurations in Figs.12-14.

As can be seen, the computational models clearly show increasing complexity with flow velocity
while the experimental models appear to have mostly a single frequency response.

It is interesting that the outboard wing computational results shown in Fig.15 do not show
this trend. This figure demonstrates that for the outboard wing a single frequency response occurs
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Figure 8: Discrete Fourier transform of component B trailing edge tip LCO velocity at a flow
velocity of 19.723 m/s; θc = 0.
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Figure 9: Component B trailing edge,tip LCO velocity versus time at a flow velocity of 22.70 m/s;
θc = 0.

Nonlinear Aeroelastic Study for Folding Wing Structures 

RTO-MP-AVT-168 10 - 15 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



-0.002 -0.001 0 0.001 0.002 0.003 0.004
DISPLACEMENT (M)

-0.4

-0.2

0

0.2

0.4

V
E

L
O

C
IT

Y
 (

M
/S

)

Figure 10: Component B trailing edge, tip LCO phase portrait at a flow velocity of 22.70 m/s;
θc = 0.

0.0005 0.001
DISPLACEMENT (M)

-0.04

-0.02

0

0.02

V
E

L
O

C
IT

Y
 (

M
/S

)

Figure 11: Component B phase trailing edge, tip LCO phase portrait at a flow velocity of 16.00
m/s; θc = 0.
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Figure 12: Component B tip,trailing edge velocity dynamic complexity measure versus flow velocity;
θb = 30,θc = 0.
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Figure 13: Component B tip,trailing edge velocity dynamic complexity measure versus flow velocity;
θb = 30,θc = 30.
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Figure 14: Component B tip,trailing edge velocity dynamic complexity measure versus flow velocity;
θb = 30,θc = 60.

over the flow velocity range investigated. Also from Fig.16 it can be seen that the computed tip
displacement of the outboard wing is quite large, especially for the two configurations with the
smaller outboard wing folding angle (θc = 0 and θc = 30). The θc = 60 configuration shows much
smaller outboard wing tip limit cycle amplitudes and a larger degree of “nonlinear stiffening” as
the flow velocity is increased.

6.0 CONCLUSIONS

The nonlinear aeroelastic response characteristics of a three component(fuselage,inboard wing and
outboard wing) folding wing configuration are investigated both experimentally and theoretically.
The theoretical analysis includes a nonlinear structural dynamics model using a discrete Ritz basis
derived from finite elment and component synthesis analysis and a nonlinear vortex lattice potential
flow model for the fluid.

Computational results for an inboard wing folding angle of 30 degrees and three different out-
board wing folding angles (0,30 and 60 degrees) are compared to experiment. For each configuration,
post-flutter limit cycle oscillations are found in both the experiment and computations. Overall the
correlation between the computation and experiment in this post-flutter region is good. Predicted
and experimental response amplitude and frequencies for the inboard wing trailing edge tip position
compare favorably. The theoretical model predicts similar outboard limit cycle tip displacements
for outboard wing folding angles of 0 and 30 degrees while the configuration where the outboard
folding angle is 60 degrees show signficantly smaller limit cycle amplitudes and a higher degree of
nonlinear stiffening with increasing flow velocity.
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Figure 15: Theoretical component C tip, trailing edge velocity dynamic complexity measure versus
flow velocity.
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Figure 16: Theoretical component C tip, trailing edge root mean square LCO displacement versus
flow velocity.
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A measure of dynamic complexity consisting of the ratio of the maximum Fourier coefficient
amplitude to the square root of the sum of the squares of all the amplitudes is introduced. From this
measure, and by inspection of the discrete Fourier transforms, time histories and phase portaits, it
is found that the computational model inboard wing response contains larger contributions from
multiple frequencies as compared to the experiment leading to a more complex dynamic response.
The omission of structural dynamic damping or an overly simplified theoretical model of the joint
dynamics is a possible explain for this discrepancy. This complex dynamic response is not predicted
for the outboard wing, as the limit cycle behavior consists mostly of a single frequency, large
amplitude, response.

Finally a significant result from this study is the determination that both the experiment and
computation show that differences in the limit cycle behavior do exist between the various folding
wing angles. Also, based upon calculations using a linear aerodynamic model, it appears that the
nonlinear aerodynamic effects are smaller than the nonlinear structural effects for the cases studied.
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